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Net CO, emissions (GtCO,)
Fossil fuel and land use change

“Stopping climate change will be slow or very expensive”

Net-negative global emissions

Source: Global Carbon Project (2017) and Bank of England (2018)

|<6°C

<5°C

<4°C

To achieve < 2 degrees:
« Economic growth must suffer

 We may need to reduce our
energy usage

» We need to build 13Gt or
more of Carbon Capture and
Storage plants by 2100

 Electricity prices are likely to
be higher
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Performance of IEA and IAMs
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Useful energy cost ($[2020]/MWh)

1880

Evolution of the global energy landscape

Useful energy production (EJ/yr)
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Technological change

» Technologies improve at very different
rates

* The rates are highly persistent
» This is only clear with granular data
Hypothesis: We can make far better

predictions of long-term growth using
fine-grained models.




Distribution of price annual growth rates
U.S. Manufacturing, 1958-2011
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Consumer goods

20 Years of Price Changes in The United States

Selected Consumer Goods & Services, Wages (January 1998 to December 2018)
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How to take advantage of
persistence and heterogenel
of technological change?

Make use of empirical laws.




Moore’s Law (1965)

Originally a statement about density of
transistors. We will use to refer to the
hypothesis that technological performance
improves exponentially with time.

Transistor count

CPU Transistor Counts 1971-2008 & Moore's Law
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Wright’s Law (1936)
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Average unit price (real $)
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Do lower costs cause higher production or does higher production
cause lower costs?

Studied US production in World War Il (Lafond, Greenwald, Farmer)
Causality is reasonably clear

Cumulative production (experience) explains about half; overall
trend explains the other half



How to make forecasts: the stochastic experience curve
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- Reformulate Wright’s law as a time series model (Lafond et al, 2018)



How to make forecasts: the stochastic experience curve
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e Pretend to be at a given time in the past

e Forecast each “future” date

e Repeat for all past dates

e Score methods based on forecasting errors

1000

Assume process is
same for all
technologies, but
parameters differ



How to make forecasts: the stochastic experience curve
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e Provides experience curve forecasts with reliable error bars
e Forecasts are scenario-dependent: the more we produce, the higher our
probability of moving down the experience curve



PV module price in 2013 $/Wp
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Contrasting forecasts
of solar energy costs

“Solar power s by far the most expenstve
p y p
way Lo reduce carbon emissions.”

The Economist (2014)

“For projects with low-cost financing that
tap high-quality resourceds, solar PV us
now the cheapest source of electricity in
history.”

International Energy Agency
(2020)

CHANGING ENERGY COSTS

The price of solar power continues to plummet; its cost is projected to
fall below those of nuclear and coal.
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price in $/kWh
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Designing an energy system model around the data

 We know how to make reliable forecasts for single techs: AR(1), Wright’s law
* How do we combine forecasts to say something about the full system?

» Need a system model: lots of techs, in suitable quantities (scenarios)

* Note key features of forecasts:

10°

e Data-intensive 1000 - ikes

| Oil |
100 - N ""'ﬁ""‘«i'.ﬁ;;
10 -

-1.63

N
o
N

16.3

 Probabilistic

2018%/bbl
2018%/GJ
LCOE, 2018%/MWh

e Scenario-dependent

_\
OA

1 -0.163

1850 1900 1950 2000 2050

10°

 These lead to different design than other models
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* Simple to understand and communicate

* C(Closely tied to data

* Easy to update with new data

* Quick to run, test, experiment

* Represent all the most important parts of the energy system

e Faithfully represent technology dynamics (costs, growth rates, substitutions...)
* Reliable, trustworthy

-> Want as few variables as possible while retaining sufficient realism

-> Major bottleneck is data, we spent a lot of time on this



In contrast: an Integrated Assessment Model (IMAGE)
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Technology Data Cost trend Forecast model

Oil, coal, gas ~100 years Flat AR(1)
Coal & gas electricity ~40 years Flat AR(1)
Nuclear power ~40 years Flat / increasing Wright
Hydropower, biopower 10-20 years Weak progress / flat Wright

PV, wind, Li-ion batteries,

PEM electrolysers 10-50 years Strong progress Wright

e Data exists for global costs and global production, not regional

* Limited data: CCS, biofuels, traditional biomass, heat, pumped storage, marine,
tidal, geothermal, concentrated solar, flow batteries, electricity networks




How we choose which technologies to include in the model

3.

4.

Data availability — can only use techs with sufficient data

System coverage — techs with large production

System dynamics — techs with large growth rates

Flexibility & functionality — energy storage, transport & conversion techs

27



How we choose which technologies to include in the model

1. Data availability — can only use techs with sufficient data
2. System coverage — techs with large production
* Primary fuels: crude oil, coal, gas
* Electricity: coal, gas, nuclear, hydropower, biopower
3. System dynamics — techs with large growth rates
e Wind, PV, others below
4. Flexibility & functionality — energy storage, transport & conversion techs
e Batteries (Li-ion and VRF), electrolyzers (PEM), electricity networks

What do we exclude? CCS, geo, biofuels, traditional biomass, marine, tidal,
geothermal, CSP, petrochemical feedstock (plastics), pumped storage

28



Co-“construct” costs and deployment — they forecast both things at once

» Small early errors get magnified over time

Some use endogenous technological learning (but with point forecasts)
Can be myopic or optimize over longer time horizon

Impose extra ad hoc constraints (floor costs, deployment growth
constraints, deployment limits etc...)

Their past record is very bad for fast moving techs

Hard to make scenarios match past or current trends



* Exogenously and based on empirical trends
1) 14 technologies / 5 energy carriers / 4 sectors
2) Key assumption: total useful energy grows at 2% (and within sectors)

3) Allow different combinations of techs to grow at current rates for
around a decade, then relax back to system-wide rate

4) ...subject to a few extra constraints:
e Electrification % is capped (per sector) - some fuels are still provided
 VRE deployment matched by long- and short-term storage, fixed %

 NB. Scenarios are exogenous - not constructed by optimization



Energy inputs
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How we construct scenarios by letting trends continue

Clean tech growth rates continue for a decade Fossil fuel growth rates continue
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Annual electricity generation

Annual final energy (EJ/yr)

and storage (PWh/yr)
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Forecasts generated by our scenarios
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Trillion $ / year

(

Results - median expenditures on each technology

A. No Transition B. Fast Transition C. Slow Transition
8
(§) e
4 ,

j i N e —

2020 2040 2060 2020 2040 2060 2020 2040 2060
Year

el Oil Bl Coal electricity BN Hydropower Solar PV B Electrolyzers

e Coal Gas electricity I Biopower Daily grid batteries Electricity networks

Gas EE Nuclear s Wind Multi-day grid batteries




Results — relative net present costs of scenarios
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Model granularity (technologies, geography) — what level is best?
e Sub-techs, tech vintages, regional diversity in costs

Storage and electrification %s (our own “ad hoc” assumptions)

Tech surprises — what can’t we predict?

We made consistently pessimistic assumptions re costs and performance
of clean technologies (e.g. assume FF costs don’t rise, no DSM)

Interpretation — we don’t say how to achieve any scenario... policy

New techs likely to make a fast transition even cheaper — structural
batteries, grid-forming inverters, hot-rock storage...



N

What is the cost of decarbonlsmgv}.
the global energy system?

« Commonly assumed that clean energy transition
will be very expensive.

« But wind, solar have dropped in price for many
decades, in contrast to coal, oil, gas, nuclear...

« Converting to renewables plus storage quickly is
likely to deliver net savings, above and beyond
climate change mitigation benefits




UKIVERSITY OF

OXFORD

Overview

What are decision-makers being told about climate
mitigation pathways?

What is wrong with this story?
|s there a better perspective?

What is the cost of decarbonising the global energy
system?

Socio-technical transitions, regional differences and o, &
emission pathways
Conclusions “ :




Socio-technical transitions and experience curves
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Renewables cheaper than fossil fuels within 5 years for China and US

United States
Flgure 3.5 Detailed breakdown of utility-scale solar PV total installed costs by country, 2019
$/MWh (real 2016)
Figure 3.3 Total installed PV system cost and weighted averages for utility-scale systems, 2010-2019 120 |
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Most solar capacity is situated in China (255 GW),

T-1E the United States (76 GW), J 68 GW),
Green Energy Potential: Solar e Unted State (76 GV 2apan (88 GW)
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© 2019 The World Bank
Source: Global Solar Atlas 2.0
Solar resource data: Solargis

Long-term average of photovolaic power potential (PVOUT)
Daily totals: 2.0 2.4 2.8 3.2 3.6 4.0 L4 4.8 52 5.6 6.0 6.4

L I Wb kW

Yearly totals: 730 876 1022 1168 1314 1461 1607 1753 1899 2045 2191 2337

Source: https://globalsolaratlas.info/global-pv-potential-study 42



Most wind capacity is situated in China (288 GW),

Green Energy Potential: Wind mgi ;J?étgeocla \S/\tl?tes (122 GW), Germany (62 GW), and

Wind Power Densi 100m - m'
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Source: https://globalwindatlas.info/ 43
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Net CO, emissions (GtCO,)
Fossil fuel and land use change

The IPCC story of meeting the Paris goals seems unachievable

120 4

980 2000 2020 2040 2060 2080
Source: Global Carbon Project (2017) and Bank of England (2018)

j<6°C To achieve < 2 degrees:
<5°C « Economic growth will suffer

 We may need to reduce our
energy usage

<4°C « We need to build a Carbon
Capture and Storage plant
every 3 days to 2100

¢ Electricity prices are likely
to be higher




Net CO, emissions (GtCO,)
Fossil fuel and land use change

Aligns the energy system with the Paris goals for much less cost

120 4

™
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2060

Source: Global Carbon Project (2017) and Bank of England (2018)

|<6°C

<5°C

The Decisive Transition is:

 No reduction in economic
growth required

« No reduction in energy use
applied

» Carbon Capture and
Storage not used

 Electricity prices ~ one third
of “business-as-usual”
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By |nstitute for
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I New Economic Thinking
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* There is an opportunity to change the “mood music” being played to decision makers

« Continued strong growth in investment in key renewable and storage technologies over
the next decade will:

Put us on track to meet the Paris emission reduction goals

Cost trillions less than business as usual

Need not reduce economic prosperity

And could make electricity much cheaper for everyone

« COP26 offers an opportunity for a Glasgow Accord on action - decisive support for
renewables + storage now will pay huge dividends



Oxford Integrated
Climate Economics
Model

» Modular by design

» Empirically grounded,
verified & tested

» Driven by micro level
data

» Enables simulations
based on model
predictions for policy
exploration

49



UKIVERSITY OF

Thank you




