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Windows



Motivation

https://pixabay.com/photo-455239/

e 70% to 40% of energy in developed countries is used to maintain indoor temperature!
e Upto 30% of heat is lost through windows in winter?

[11L. Pérez-Lombard, et al., fnergy Build., vol. 40, no. 3, pp. 394-338, Jan. 2008.
[215.D. Rezaei, et al., Sl Fnergy Mater. Sol. Lells, vol. 188, pp. 26-al, 2017


https://pixabay.com/photo-455239/

Current smart window technologies

Solar modulation via tunable scattering

Sol dulation via tunable absorpti
(hydrogel. LC, nanoparticles, etc.) clar TOCUIaTIAn Vg Lnate ansavprn

(Reversible reactions, V0,, nanoparticles, etc.)

X.Lietal, Joule 3, 230-302 (2013) C. Barile et al., Joule |, 133143 (2017)




Phase-change materials as an optoelectronic platform
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smart window design

Reversible/non-volatile phase change via
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Smart window design

Winter Summer

Nathan Youngblood
Former Postdoc, now Assistant Praf
at University of Pittshurgh

Peiman Hosseini
Former Postdoc, now Director of
Operations at Meta Materials
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N. Youngblood et al., ALS Photanics 9(1), 80-100 (2022)
P. Hosseini et al., Nature 5ll, 206-211 (2014)



Visible properties

Amorphous Crystalline

Amorphous Crystalline

N. Youngblood et al.. ALS Photanics 9(1), 30-100 (2022)



Spectral response
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Spectral response
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Z2x modulation of near-IR solar energy
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Near-IR to far-IN conversion
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Thermal response (12x speed)



(n Smart Windows...

o Demonstrated a solid state smart window using only 1a nm of PCM as an active material.
o 78% of near-IR enerqy is reflected in the amorphous state and 4a% is absorbed in the crystalline state.
o Absorbed enerqgy is converted to far-infrared radiation and preferentially radiates into the room

» [ilazing acts as low-emissivity coating, reflecting thermal radiation from environment.

META

Go Beyvond.



Photonic Computing for
Machine Learning and Al
hardware



Data volume has shot up

o Al applications currently generate 80 Exabyte/year and it is expected that it will be 845 Exabyte/year
in 2025

https://www.datanami.com/2018/11/27/global-datasphere-to-hit-175-zettabytes-by-2025-idc-says
https://www.mckinsey.com/~/media/McKinsey/Industries/Semiconductors



But Al's Computing Efficiency Sucks

1 million Wvs 20 W

No-one-kfiowsyett ==

GPUs do the training; CPUs

and sometimes FPGAs infer;
race to “new” ASICs

Deep Learning:
Many Layer Neural
Netwarks

=3

Data Output

Adapted from Sebastian et al, JAP 124, doi:
[0.1063/1.5042413 (2018).



But Al's Computing Efficiency Sucks

Doing nothing is not an option



Scaling # Better performance/area

https://www.nextbigfuture.com/2019/02/the-end-of-moores-law-in-detail-and-starting-a-new-golden-age.html. 1L/20/2020



Solution: co-locate memory and processor using
accumulative memories



Performance gap

https://www.extremetech.com/computing/261792

“Memaory Wall”

Processor 52% annually

Performance gap

Memory 7% annually

21



Phntnnics IS hettgp? “The future is optical. Photonic processors promise
blazing fast calculation speeds with much lower

power demands” @IEEE Spectrum (2022)

* Large bandwidths
= Wavelength, phase, polarization, etc
» Faster communication speed

Good for communication, but for programming?



“Phase Change Optical Memory” Background

Simulations > Un a hotplate > Experimental multilevel Demonstration

Pernice and Bhaskaran, Appl Phys. Lett (2017) Rios et al Adv. Mater. (2014) C. Rios et al., Nature Photonics 9, 725-732 (2015).




In-Memory Photonic Computing

e In-memory computing
schemes are growing (IBM
using electronics)

e Non-volatile,
reprogrammable memary
banks are efficient for
inferencing applications

Rios, Youngblood et al., Science Advances (2019)
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From Single Devices to Computing Systems

Johannes Feldmann
Former Postdoc, now

CT0 at Salience Labs

Kernel matrix  Input  Output Nathan Youngblood
Ty Former Postdoc, now Assistant Prof
i ! " at University of Pittsburgh
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Feldmann, Youngblood, Karpov et al., Nature (2021) U Y,
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Energy consumption per MAC in a NxN array

/ This term is missing in photonics

| : 1
Evorai(electronics) = Echarging T Emoa + Erec + Enoise = N X CV?* + N (Emoa + Erec) + 2kpT X 22N+l
1

Crechec]

- 1 hv 2Np+1
Etotar(Photonics) = Epmpg + Erec + Enpise = N (Emoa t Erec) + ? X max[2-7bT4, -

L
At 4-bit precision, assuming 1=0.2 \

This can be further optimized.
We achieve single photon data processing if n=l.

1 = Nigser X 77waveguide>< Umemoryx Ndetector

We are working on reducing the losses in memory.
There is collaborative effort on reducing the other three terms
- Low-precision neural network (to reduce N,,) is also a direction.

Mitchell A. Nahmias et.al., Photonic Multiply-Accumulate
Operations for Neural Networks, IEEE JSTQE, 8844098 (2020).



Photonics are still bulky!

Free-space optics Integrated photonics

NN =




Plasmonic nanogap: Dual electronic and optical functionalities

Fully addressable nanoscale memory in both optical and electrical
domains!

N. Farmakidis, N. Youngblood et al., Science Advances (2019)



New Materials - What and How?

Cheng, Milne et al, Science Advances (2021) Tengguang Cheng

DOI0.128/sciadv.abd7087 gﬂ;hﬂ,lhgit'“j t Former Pastdoc now Assoc.
1l otuden Prof at Fudan



Nanomanufacturing



Nanomanufacturing is not sustainable

o The manufacturing of a typical Zq chip takes |.b6 kg of fossil fuel, 77 g of chemicals and 57 kg of water.

o [ver 200 high-purity organic and inorganic chemicals are used for the manufacture of semiconductor
devices.

o According to author Harvey Black of the £nvironmental Health Perspectives Journal in San Jose,
California “it costs $28 per ton to landfill waste compared with $147 a ton to recycle”.



Sustainability in nanomanufacturing

Yu Shu (DPhil)

Yu Shu et al Nano Letters 2\, (Z027/)



Flexible Moy, photodetector

Photoresponse time improves to 42 ms owing to the water-
based fabrication process.

Yu Shu (DPhil)

Yu Shu et al. Nanoletters 2\, (207/)



Communication receivers

Rattery is running low!

During a Phone Call

in Suspended Mode



Frequency synthesis
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Ref: Analog Devices, https://www.analog.com/en/analog-dialogue/articles/ pll-for-high-frequency-receivers-and-transmitters-1.html

Pl based:

= PLL synthesizers usually require > 100 mA (d.c.) from the
voltage supply. > ~0.0 W

Iraditional NEMS based:

= [Capacitive tuning requires fast-settling & high-precision
0/A converters.

= e.g. AD7924 (8-bit, 0.3 ps settling, 30 mW) or LTCBO43 (12-bit,
| ps settling, 10 mW)

= Electrothermal tuning consumes ~3 mW just to tune the
resonator (plus DACs).

Phase-change NEMS based:

= Phase-change tuning does not require tuning power.

= Fven in a frequency-hopping system, with the fastest tuning
speeds required (10 ps), the dynamic tuning power is < B pW.



https://www.analog.com/en/analog-dialogue/articles/pll-for-high-frequency-receivers-and-transmitters-1.html

Pick-and-Place of Nanomaterials

 Alows integration of exotic nanomaterials in real devices



Phase-change nanowires

Utku Emre Ali
(DPhil student)

U. E. Ali et al., Nature Lommunications (2022)



Guglielmo Marconi’s telegram on 14 December 1930



Advanced Nanoscale Engineering Lab (ANE)

Westfilische
Wilhelms-Universitit
Miinster

Dr Abu Sebastian Prof Ritesh Agarwal

B Microsoft .
nanoeng.materials.ox.ac.uk
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