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Real-world performance 
of small off-grid solar 
systems in Africa
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2. Battery health from field data
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Oxford has a critical mass of battery research activities
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Images: Goodenough public domain (US DOE), Plaque CC BY 3.0 license by Kastrel; Models Howey et al., 2020 Electrochem. Soc. Interface 29(4):30-34 (by A. Mistry); EIS, Noel Hallemans; lower photos Brill Power and Ian Wallman.

1980 2023: 25 faculty, 50+ postdocs, 80+ PhD students
Materials: Patrick Grant, Peter Bruce, Saiful Islam, Mauro Pasta;

Engineering/Maths: Paul Shearing, Charles Monroe, Jon Chapman, myself

BIL: Modelling, control, diagnostics, data



We’ve had several successes in ‘battery engineering’
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Damien Frost: Decentralised
modular batteries/BMS, 2016/17

Christoph Birkl: Tracking 
electrode-specific degradation 
modes, 2017 (with JLR)

Adrien Bizeray: Fast P2D model, 
Samsung Applied Institute of 
Technology, Korea, 2015
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FI Project on UK gigafactories, 2019 
(with McKinsey)

Trishna Raj: Measuring 
path-dependent aging, 
2020 (with JLR)

Jorn Reniers, Volkan Kumtepeli: 
Impact of usage on revenue & 
life of grid storage (2020-)

Papers: Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., & Howey, D.A. (2017). Journal of Power Sources, 341, 373-386; Raj, T., Wang, A.A., Monroe, C.W., & Howey, D. A. (2020). 
Batteries & Supercaps, 3(12), 1377-1385; Reniers, J. M., Mulder, G., & Howey, D. A. (2021), Journal of Power Sources, 487, 229355. Top centre photo: Brill Power. Bottom R: ESO.



Energy access is an ongoing research theme
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Long-term relationship with BBOXX
Supporting DPhil students and research:
• Valentin Sulzer, 2015-19, modelling lead-acid batteries
• Antti Aitio, 2018-22, battery health estimation
• Becky Perriment, 2021-25, energy use and battery life
• MaxBatt project, 2024-25, life extension (?)

Papers: Aitio and Howey, Joule 5(12):3204-3220, 2021 + arXiv Preprint 2304.13666, 2023. Photos and images also thanks to BBOXX and Becky Perriment.
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Battery health prediction is important, but challenging
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Electric car owner Investor in a 50 MWh battery Off-grid system supplier in 
Kenya

How much will it 
be worth in 5 

years?
What’s the return 
on investment?

How many spare 
batteries should I 

order next 
month?



Physics-based models enable plausible long-term scenario testing
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Images: LHS adapted from Lu, Bertei, Finegan et al. Nat Commun 11, 2079 (2020) CC BY 4.0 license, middle bottom and RHS: Adrien Bizeray
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But there are challenges: validation, identifiability, 

fundamental understanding



Machine learning is interesting – but only if you have enough (good) data
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ML can be used for diagnostics and prognostics

Richardson, R.R., Osborne, M.A., & Howey, D.A. (2017). “Gaussian process regression for 
forecasting battery state of health”. J Power Sources, 357, 209-219 and Richardson, R.R., Birkl, C.R., 
Osborne, M.A., & Howey, D.A. (2018). “Gaussian Process Regression for In Situ Capacity Estimation 
of Lithium-Ion Batteries”. IEEE Transactions on Industrial Informatics, 15(1), 127-138. Figures kindly generated by Zihao Zhao

But generalization requires large, rich datasets

Toy example: train 
model on one 
condition but use it 
at another 
condition.

So much can change!
• temperature, C-rate
• SOC range
• energy/power cell
• chemistry
• application
• rest periods…

We need more data! Maybe field data can help 

(BUT…)



Learning battery health from field data (with very simple models!)
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'diagnostics’ ‘prognostics’

Figure reprinted from Aitio and Howey, Joule 5(12):3204-3220, 2021



From field data, learn the dependence of RS on SOC, T, I, t
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unit sent 
for repair

Voltage data: BBOXX; Video: Antti Aitio



To predict failure, train a classifier with independent validation data

14

Stress factors, i.e. cumulative:
• Age
• Charge throughput
• Cycles
• Mean temperature
• Mean voltage
• …

+
Classifier

aging model:

SOH estimates 
of ~1200 
batteries
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Figures reprinted from Aitio and Howey, Joule 5(12):3204-3220, 2021

1027 batteries

“Probability of 
failure is high 

for 23 batteries 
this month.”
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Adjusting battery controls based on usage can improve lifetime
People use solar home 

systems differently
Batteries experience different 

ageing mechanisms/rates
Control ageing rates by 

adjusting upper voltage limit

Challenge: How to extend 
battery lifetime without 

impacting user experience



• Clustering is a key technique for 
unsupervised learning

• Split data into groups based on ‘similarity’
• Not an exact science!

• Time series are tricky – what distance to 
use? 
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Clustering is useful for understanding time series (energy) data

Original time series Optimal shifting Matched time series

Clustering gif by Chire, 2021, Wikimedia commons, CC BY-SA 3.0 licence. DTW images by Romain Tavenard, https://rtavenar.github.io/blog/dtw.html, 2021 



Five clusters of electricity use show up in rural off-grid systems
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We clustered the daily load profiles of over 1,000 BBOXX SHS customers

Perriment et al., “Clustering Load Demand of Off-Grid Solar Home Systems in Sub-Saharan Africa: Insights on Payment and Long-Term Behaviour”, Paper under development



Summary and outlook
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david.howey@eng.ox.ac.uk                               @davidhowey
howey.eng.ox.ac.uk and github.com/battery-intelligence-lab 

• We’re still learning how batteries 
perform ‘in the wild’. Lab tests often 
don’t compare well to field data.

• Combining aging models and usage 
data is key to extending life.

• Also true for larger systems, e.g….


