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Objectives of the talk

• Obj 1: Make the case that cooling is a real obstacle to net-

zero transition

• Obj 2: Establish radiative cooling as a viable, electricity-free 

solution to traditional cooling methods

• Obj 3: Introduce the “cold” universe as an additional 

renewable resource in the fight against climate change

• Obj 4: Raise awareness in the field
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Motivation for sustainable cooling
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Need for Cooling and the UK

4

Miranda, N. D., Lizana, J., Sparrow, S. N., Zachau-Walker, M., Watson, P. A. G., Wallom, D. C. H., Khosla, R., & 
McCulloch, M.. Change in cooling degree days with global mean temperature rise increasing from 1.5 °C to 2.0 °C. 
Nature Sustainability, 6(11), 1326–1330, 2023. 



Electricity and CO2
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• Electricity consumption due to space cooling surpassed 
2,400 TWh in 2022

• CO2 equivalent emissions exceeded 1.3 GT 

• Demand for cooling is growing in double digits 
Worldwide

• By 2050, >300m AC units will be sold per year

The Great Cooling Paradox 

Net-zero amid explosive demand 
for new cooling capacity



The vicious cycle between cooling 

and urban heat island
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Lorenzo Pattelli, PaRaMetriC workshop presentation, 2024



Radiative Cooling as a green 

cooling solution 
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!! Temperature difference can exceed 45C in Sahara !!



Radiative Cooling Principles
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Radiative Cooling Principles
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a.

ሶ𝑞𝑐𝑜𝑜𝑙 > ሶ𝑞𝑠𝑢𝑛 + ሶ𝑞𝑎𝑡𝑚 + ሶ𝑞𝑝𝑎𝑟

𝑇𝑒𝑞 < 𝑇𝑎𝑚𝑏

ሶ𝑞𝑠𝑢𝑛 → 0
𝑟(𝜆)~1

ሶ𝑞𝑎𝑡𝑚 ≪
𝜀(𝜆)~0

ሶ𝑞𝑐𝑜𝑜𝑙 ≫
𝜀(𝜆)~1

𝑟 𝜆 + 𝜀(𝜆) = 1
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Thermodynamic limits

𝑇𝑒𝑞~45°C𝑇𝑒𝑞 < 10°C

State-of-the-art
Parasitic heat limited

ሶ𝑞𝑝𝑎𝑟 ⋙ሶ 𝑞𝑝𝑎𝑟 ~0

• State-of-art systems suffer from 
excessive heat losses (10 W/m2K)

• Field is stuck at <10 °C cooling

• When heat losses ~1 W/m2K, 
cooling may exceed 45 °C!

Main Chalenge

Reducing parasitic heat losses is 
very challenging but holds the key 

to passive refrigeration

Parasitic heat free
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The early days. Nightime cooling
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First Daytime Demonstration 
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PHOTONIC MULTILAYER STRUCTURE Raman, A. et al (2014). Nature, 515(7528), 540–544



State-of-art Evolution
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PASSIVE DAYTIME RADIATIVE COOLING: MOVING BEYOND MATERIALS TOWARDS REAL-WORLD APPLICATIONS, A Aili et al., Next Energy, 3, 2024



Application 1: Cooling of Buildings
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Integration of Radiative-based air temperature regulating system into residential building for energy saving, Applied Energy, 301, 2021



Application 2: Cooling of vehicles
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Duan, Z., Wu, S., Sun, H. et al. Improvements in energy saving and thermal comfort for electric vehicles in summer through coupled electrochromic and radiative 
cooling smart windows. Build. Simul. 17, 1231–1251 (2024)
Design of radiative cooling covers for automobiles with maximized cooling power, International Journal of Heat and Mass Transfer, 227, (2024)



Application 3: Personal Thermal 

Management
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NANOPOROUS POLYETHYLENE MICROFIBRES FOR LARGE-SCALE RADIATIVE COOLING, Peng, Y.et al (2018). Nature Sustainability, 1, 105-112

SUSTAINABLE POLYETHYLENE FABRICS WITH ENGINEERED MOISTURE TRANSPORT FOR PASSIVE COOLING , Alberghini, M.et al (2021). Nat. Sustainability, 4, 715-724
SPECTRALLY SELECTIVE NANOCOMPOSITE TEXTILE FOR OUTDOOR PERSONAL COOLING, L. Cai et al Adv. Mater. 30, 1–7 (2018).



Application 4: Horticulture
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Exploring real-world applications of passive radiative cooling for sustainability, Lin, Kaixin et al. (2025) Cell Reports Physical Science, 6, 2, 102445

Enhancing food production in hot climates through radiative cooling mulch: A nexus approach, Wang, Chenxi et al. (2024) Nexus, Volume 1, Issue 1, 100002



Cooling to improve heat engine 
efficiency



Cooling to improve heat engine 
efficiency



Thermoelectric generation
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Thermoelectric Generator Using Space Cold Source ACS Appl. Mater. Interfaces 2019, 11, 37, 33941–33945
Generating Light from Darkness Joule, Volume 3, Issue 11, 2679 - 2686



Passive cooling of Solar Cells
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Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module, Solar Energy, 176, 2018
A review on the integration of radiative cooling and solar energy harvesting, Materials Today Energy, 21, 2021



Cooling to improve refrigeration 
COP



Integration with refrigeration 

engines

Property of Engie Crigen Lab



Pi-lab work in radiative cooling

• Coatings

• Films

• Glass

• Self-adaptive systems

• Passive refrigeration systems

• Horticulture

• Heat and refrigeration engines

• Radiative cooling maps
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Definition of a “good” paint / coating /film

Desirable Characteristics

High cooling power

Low environmental impact (PFAS free, low VOC)

Mechanically durable (abrasion resistant, good tensile strength)

UV-resistant

Resist fouling (pollution, dust, chemicals in atmosphere) 

Moisture resistance

Good adherence on most substrates (ceramics, glass, plastics, metals, concrete …)

Easily Scalable

Lightweight

Low cost 

Adapt to ambient conditions
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PolyCool: 1st Generation Coating
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MIR windowSolar radiation MIR windowSolar radiation 

Lingxi L., Zulfiqar, U., Ramirez‐Cuevas, F. V., Khan H., Santamouris M., Tiwari, M. K., Parkin, I. P., Papakonstantinou, I.† (2024). Radiative 
Cooling Coating by Using Porous PE with PDMS Nanoparticles, ScienceOpen Preprints, DOI: 10.14293/PR2199.000782.v1.



PolyCool: Static Coating
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MIR windowSolar radiation 



PolyCool Formulation

10 μm



Why porous host?
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10 μm
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Porosity vs scattering
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Optical Performance
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Outdoor tests - London
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Outdoor tests – London (36h)
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Next generation coatings – 
durable, durable and durable

• Water based for buildings

• Solvent based for vehicles

• Applied by spraying or 
brushing

• Durable – durable - durable



Abrasion resistance tests



Water repellency



Madrid Oct 2024

Pilot studies

TFL Summer 2025

SINCERE: The second life of modern period architecture: Resilient and adaptive 
renovation towards net-zero carbon heritage buildings https://sincere-project.eu/

Property of Acciona 



The need for tunable solutions

frost
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Emissivity control
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Summer Winter



Phase change, thermochromic materials
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(image adapted from     )

*Z. Yang, C. Ko, and S. Ramanathan, "Oxide electronics utilizing ultrafast metal-insulator 
transitions," Annu. Rev. Mater. Res. 41, 337–367 (2011).

VO2



IR antennas - tuneability
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HDPE
HDPE +  VO2 NAs

  



IR antenna composite foil for self-adaptive 

thermoregulation
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HDPE HDPE +  VO2 NAs

Polyethylene

• Composite foil (PE polymer host + VO2 
thermal antennas)

• Substrate free, lightweight and 
flexible

• Very small amount of VO2 synthesized 
with industrially compatible processes 
(hydrothermal)

• Scalable manufacturing with 
compression molding, roll-to-roll, 
injection molding  

F. V Ramirez-Cuevas, K. L. Gurunatha, L. Lingxi, U. Zulfiqar, S. Sathasivam, M.K Tiwari, I. P. Parkin, and I. Papakonstantinou, " 
Infrared Thermochromic antenna composite for self-adaptive thermoregulation," Nat. Comms, , 15, 9109 (2024).



Self-adaptive Composite fabrication
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K. L. Gurunatha, S. Sathasivam, J. Li, M. Portnoi, I. P. Parkin, and I. Papakonstantinou, 
"Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal-
Insulator Transition of VO2 Colloidal Particles," Adv. Funct. Mater. 30, 2005311 (2020).



Self-Adaptive Emissivity – Experimental 

evidence

a
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Solar Maps - Rad Cool Maps



Radiative Cooling Maps (UK)



Radiative Cooling Potential UK

• North: Consistent cooling (47-60 W/m²), 

Edinburgh peaks at 56 W/m² in winter.

• South: Highest cooling in spring/summer, London 

reaches 65 W/m² in spring.

• Midland: Lowest cooling.

• Best Seasons: Spring most favorable, followed by 

summer, fall lowest potential.



Thank you for your attention! 
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